

Degree Guide:

Associate in Computer Science, Direct Transfer Agreement/ Major Related Program (DTA/MRP)

Program Computer Science (CS/CS&) Degree Type Transfer Degree

Degree Requirements

The Associate in Computer Science, Direct Transfer Agreement/Major Related Program (DTA/MRP) is applicable to students planning to prepare for computer science and related majors at universities and colleges in Washington. This degree guide meets all of the requirements of the Direct Transfer Agreement (DTA).

Students should check specific requirements of their intended transfer institution, including overall minimum GPA, a higher GPA in a selected subset of courses or a specific minimum grade in one or more courses such as math or English. To qualify for this degree, you must complete a minimum of 90 credits in courses numbered 100 or above, with a cumulative grade point average (GPA) of 2.0 or better. Computer Science programs are competitive and may require a higher GPA overall or a higher GPA in specific courses.

View the <u>Associate in Computer Science DTA/MRP document</u> for specific university requirements and confer with your advisor.

Program Code: CSACSAA

Communication Skills

Catalog #	Course Title	Credits
ENGL& 101	English Composition I	5
ENGL& 235	Technical Writing	5

Quantitative Skills

Catalog #	Course Title	Credits
MATH& 151	Calculus I	5

MATH& 141 and MATH& 142 are required prerequisites and count as electives in Remaining Credits.

Humanities

Catalog #	Course Title	Credits
Humanities Distribution List (Computer Science)		15

Natural Sciences

Catalog #	Course Title	Credits
PHYS& 221	Engineering Physics I with Lab	5
PHYS& 222	Engineering Physics II with Lab	5
MATH& 152	Calculus II	5

Social Sciences

Catalog #	Course Title	Credits
Social Sciences Distribution List (Computer Science)		15

Pre-Major Requirements

Catalog #	Course Title	Credits
CS& 141	Computer Science I with Java	5
CS 142	Computer Science II with Java	5

<u>CS100</u> is strongly recommended for students new to computer programming as a prerequisite to <u>CS&141</u>.

Remaining Credits

Work with an advisor to choose electives based on your interests, planned major, and transfer institution.

Catalog #	Course Title	Credits
Elective		5
Elective or MATH& 141		5
Elective or MATH& 142		5
PHYS& 223	Engineering Physics III with Lab	5

Elective + MATH& 141 and MATH& 142 may be used if taken as a prerequisite for MATH& 151.

Total Credits 90	
------------------	--

Sample Schedule

First Quarter (Fall)

Catalog #	Course Title	Credits
CS100	Introduction to Computer Science	5
ENGL& 101	English Composition I	5
MATH& 141	Precalculus I	5

Second Quarter (Winter)

Catalog #	Course Title	Credits
CS&141	Computer Science I with Java	5
ENGL& 235	Technical Writing	5
MATH& 142	Precalculus II	5

Third Quarter (Spring)

Catalog #	Course Title	Credits
CS 142	Computer Science II with Java	5
Humanities		5
Social Sciences		5

Fourth Quarter (Fall)

Catalog #	Course Title	Credits
MATH& 151	Calculus I	5
PHYS& 221	Engineering Physics I with Lab	5
Social Sciences		5

Fifth Quarter (Winter)

Catalog #	Course Title	Credits
Humanities		5
MATH& 152	Calculus II	5
PHYS& 222	Engineering Physics II with Lab	5

Sixth Quarter (Spring)

Catalog #	Course Title	Credits
Humanities		5
PHYS& 223	Engineering Physics III with Lab	5
Social Sciences		5

Student Learning Outcomes

Communication Competencies

- · Comprehend the difference between written opinions vs ideas supported by scientific inquiry.
- Demonstrate the ability to communicate scientific ideas and the process of science.

Quantitative Reasoning

- Manipulate numbers (large and small), use common measurement systems, and solve simple linear algebraic problems.
- Recognize functional relationships between and among measurable phenomena.
- · Apply systematic approaches and logic to solving quantitative problems.
- Translate mathematical symbols into words and words into mathematical symbols.
- · Demonstrate the ability to use modeling and simulation to solve scientific problems.

Information Competencies

- Recognize the difference between questions of high scientific impact vs those unlikely to provide critical information about a scientific phenomenon or process.
- · Ability to apply the process of science.

Critical Thinking

- · Identify and troubleshoot scientific problems.
- Demonstrate the ability to use quantitative reasoning and analyze data.
- Demonstrate the ability to apply the process of science.

Personal and Interpersonal Competencies

- Gain an understanding of the relationships between science and society.
- Gain familiarity with and an appreciation for the interdisciplinary nature of science.
- Demonstrate the ability to collaborate and understand the importance of collaboration in science.